Zakładka z wyszukiwarką danych komponentów
  Polish  ▼
ALLDATASHEET.PL

X  

AD8350ARM20-REEL7 Arkusz danych(PDF) 9 Page - Analog Devices

Numer części AD8350ARM20-REEL7
Szczegółowy opis  Low Distortion 1.0 GHz Differential Amplifier
Download  14 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Producent  AD [Analog Devices]
Strona internetowa  http://www.analog.com
Logo AD - Analog Devices

AD8350ARM20-REEL7 Arkusz danych(HTML) 9 Page - Analog Devices

Back Button AD8350ARM20-REEL7 Datasheet HTML 5Page - Analog Devices AD8350ARM20-REEL7 Datasheet HTML 6Page - Analog Devices AD8350ARM20-REEL7 Datasheet HTML 7Page - Analog Devices AD8350ARM20-REEL7 Datasheet HTML 8Page - Analog Devices AD8350ARM20-REEL7 Datasheet HTML 9Page - Analog Devices AD8350ARM20-REEL7 Datasheet HTML 10Page - Analog Devices AD8350ARM20-REEL7 Datasheet HTML 11Page - Analog Devices AD8350ARM20-REEL7 Datasheet HTML 12Page - Analog Devices AD8350ARM20-REEL7 Datasheet HTML 13Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 9 / 14 page
background image
REV.
AD8350
–9–
For the output matching network, if the output source resis-
tance of the AD8350 is greater than the terminating load
resistance, a step-down network should be employed as shown
on the output of Figure 3. For a step-down matching network,
the series and parallel reactances are calculated as:
X
RR
X
XR
R
RR
S
S
LOAD
P
PS
LOAD
S
LOAD
=
×
where
(2)
For a 10 MHz application with the 200
Ω output source resistance
of the AD8350, RS = 200
Ω, and a 50 Ω load termination, RLOAD =
50
Ω, then XP = 115.5 Ω and XS = 86.6 Ω, which results in
the following component values:
CP = (2
π × 10 × 106 × 115.5)–1 = 138 pF and
LS = 86.6
× (2 π × 10 × 106)–1 = 1.38 μH
The same results can be obtained using the plots in Figure 5
and Figure 6. Figure 5 shows the normalized shunt reactance
versus the normalized source resistance for a step-up matching
network, RS < RLOAD. By inspection, the appropriate reactance
can be found for a given value of RS/RLOAD. The series reactance
is then calculated using XS = RS RLOAD/XP. The same technique
can be used to design the step-down matching network using
Figure 6.
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
NORMALIZED SOURCE RESISTANCE – RSOURCE/R LOAD
RSOURCE
XS
RLOAD
XP
Figure 5. Normalized Step-Up Matching Components
NORMALIZED SOURCE RESISTANCE – RSOURCE/R LOAD
3.2
3
2.8
2.6
2.4
2.2
2
RSOURCE
XS
RLOAD
XP
Figure 6. Normalized Step-Down Matching Components
The same results could be found using a Smith Chart as shown
in Figure 7. In this example, a shunt capacitor and a series inductor
are used to match the 200
Ω source to a 50 Ω load. For a fre-
quency of 10 MHz, the same capacitor and inductor values
previously found using the resonant approach will transform the
200
Ω source to match the 50 Ω load. At frequencies exceeding
100 MHz, the S parameters from Tables II and III should be
used to account for the complex impedance relationships.
SOURCE
LOAD
SHUNT C
SERIES L
Figure 7. Smith Chart Representation of Step-Down Network
After determining the matching network for the single-ended
equivalent circuit, the matching elements need to be applied in a
differential manner. The series reactance needs to be split such
that the final network is balanced. In the previous examples, this
simply translates to splitting the series inductor into two equal
halves as shown in Figure 3.
Gain Adjustment
The effective gain of the AD8350 can be reduced using a num-
ber of techniques. Obviously a matched attenuator network will
reduce the effective gain, but this requires the addition of a
separate component which can be prohibitive in size and cost.
The attenuator will also increase the effective noise figure resulting
in an SNR degradation. A simple voltage divider can be imple-
mented using the combination of the driving impedance of the
previous stage and a shunt resistor across the inputs of the AD8350
as shown in Figure 8. This provides a compact solution but
suffers from an increased noise spectral density at the input
of the AD8350 due to the thermal noise contribution of the
shunt resistor. The input impedance can be dynamically altered
through the use of feedback resistors as shown in Figure 9. This
will result in a similar attenuation of the input signal by virtue
of the voltage divider established from the driving source imped-
ance and the reduced input impedance of the AD8350. Yet
this technique does not significantly degrade the SNR with
the unnecessary increase in thermal noise that arises from a truly
resistive attenuator network.
C


Podobny numer części - AD8350ARM20-REEL7

ProducentNumer częściArkusz danychSzczegółowy opis
logo
Analog Devices
AD8350ARM20-REEL7 AD-AD8350ARM20-REEL7 Datasheet
228Kb / 16P
   Low Distortion 1.0 GHz Differential Amplifier
REV. A
AD8350ARM20-REEL7 AD-AD8350ARM20-REEL7 Datasheet
370Kb / 14P
   Low Distortion 1.0 GHz Differential Amplifier
REV. B
More results

Podobny opis - AD8350ARM20-REEL7

ProducentNumer częściArkusz danychSzczegółowy opis
logo
Analog Devices
AD8350ARMZ15 AD-AD8350ARMZ15 Datasheet
370Kb / 14P
   Low Distortion 1.0 GHz Differential Amplifier
REV. B
AD8350 AD-AD8350_01 Datasheet
228Kb / 16P
   Low Distortion 1.0 GHz Differential Amplifier
REV. A
AD8350 AD-AD8350 Datasheet
179Kb / 11P
   Low Distortion 1.0 GHz Differential Amplifier
REV. 0
AD8350 AD-AD8350_15 Datasheet
370Kb / 14P
   Low Distortion 1.0 GHz Differential Amplifier
REV. B
logo
Intersil Corporation
ISL55020 INTERSIL-ISL55020 Datasheet
580Kb / 11P
   Wideband, Low Distortion, Differential Amplifier
logo
Renesas Technology Corp
ISL55020 RENESAS-ISL55020 Datasheet
1Mb / 22P
   Wideband, Low Distortion, Differential Amplifier
December 18, 2006
logo
Intersil Corporation
LMH6555 INTERSIL-LMH6555 Datasheet
664Kb / 24P
   Low Distortion 1.2 GHz Differential Driver
logo
National Semiconductor ...
THS4500-EP NSC-THS4500-EP Datasheet
646Kb / 38P
   WIDEBAND, LOW-DISTORTION, FULLY DIFFERENTIAL AMPLIFIER
logo
Analog Devices
AD8351 AD-AD8351 Datasheet
471Kb / 16P
   Low Distortion Differential RF/IF Amplifier
REV. B
AD8351 AD-AD8351_15 Datasheet
479Kb / 19P
   Low Distortion Differential RF/IF Amplifier
REV. D
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14


Arkusz danych Pobierz

Go To PDF Page


Link URL




Polityka prywatności
ALLDATASHEET.PL
Czy Alldatasheet okazała się pomocna?  [ DONATE ] 

O Alldatasheet   |   Reklama   |   Kontakt   |   Polityka prywatności   |   Linki   |   Lista producentów
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com