Zakładka z wyszukiwarką danych komponentów
  Polish  ▼
ALLDATASHEET.PL

X  

ADP3193 Arkusz danych(PDF) 7 Page - Analog Devices

Numer części ADP3193
Szczegółowy opis  4-Bit Programmable Synchronous Buck Controllers
Download  16 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Producent  AD [Analog Devices]
Strona internetowa  http://www.analog.com
Logo AD - Analog Devices

ADP3193 Arkusz danych(HTML) 7 Page - Analog Devices

Back Button ADP3193 Datasheet HTML 3Page - Analog Devices ADP3193 Datasheet HTML 4Page - Analog Devices ADP3193 Datasheet HTML 5Page - Analog Devices ADP3193 Datasheet HTML 6Page - Analog Devices ADP3193 Datasheet HTML 7Page - Analog Devices ADP3193 Datasheet HTML 8Page - Analog Devices ADP3193 Datasheet HTML 9Page - Analog Devices ADP3193 Datasheet HTML 10Page - Analog Devices ADP3193 Datasheet HTML 11Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 7 / 16 page
background image
REV. A
ADP3158/ADP3178
–7–
CT Selection for Operating Frequency
The ADP3158 and ADP3178 use a constant off-time architecture
with tOFF determined by an external timing capacitor CT. Each
time the high-side N-channel MOSFET switch turns on, the volt-
age across CT is reset to 0 V. During the off-time, CT is charged
by a constant current of 150
µA. Once CT reaches 3.0 V, a new
on-time cycle is initiated. The value of the off-time is calculated
using the continuous-mode operating frequency. Assuming a
nominal operating frequency (fNOM) of 200 kHz at an output volt-
age of 1.7 V, the corresponding off-time is:
t
V
Vf
t
V
V
kHz
s
OFF
OUT
IN
NOM
OFF
= 


×
=−


×=
1
1
1
17
5
1
200
33
.
.
µ
(1)
The timing capacitor can be calculated from the equation:
C
tI
V
sA
V
pF
T
OFF
CT
TTH
=
×
=
µ×
µ ≈
()
.
3 3
150
3
150
(2)
(3)
f
t
VI
R
R
R
V
VI
R
R
R
R
MIN
OFF
IN
O MAX
DS ON HSF
SENSE
L
OUT
IN
O MAX
DS ON HSF
SENSE
L
DS ON LSF
×+
+
×+
+
1
() –
(
)
()
(
)
(
)
()
()
)
The converter only operates at the nominal operating frequency
at the above-specified VOUT and at light load. At higher values
of VOUT, or under heavy load, the operating frequency decreases
due to the parasitic voltage drops across the power devices. The
actual minimum frequency at VOUT = 1.7 V is calculated to be
195 kHz (see Equation 3), where:
RDS(ON)HSF is the resistance of the high-side MOSFET
(estimated value: 14 m
Ω)
RDS(ON)LSF is the resistance of the low-side MOSFET
(estimated value: 6 m
Ω)
RSENSE is the resistance of the sense resistor
(estimated value: 4 m
Ω)
RL is the resistance of the inductor
(estimated value: 3 m
Ω)
Inductance Selection
The choice of inductance determines the ripple current in the
inductor. Less inductance leads to more ripple current, which
increases the output ripple voltage and the conduction losses in
the MOSFETs, but allows using smaller-size inductors and, for
a specified peak-to-peak transient deviation, output capacitors
with less total capacitance. Conversely, a higher inductance means
lower ripple current and reduced conduction losses, but requires
larger-size inductors and more output capacitance for the same
peak-to-peak transient deviation. The following equation shows
the relationship between the inductance, oscillator frequency,
peak-to-peak ripple current in an inductor and input and
output voltages.
L
Vt
I
OUT
OFF
L RIPPLE
=
×
()
(4)
For 4 A peak-to-peak ripple current, which corresponds to
approximately 25% of the 15 A full-load dc current in an inductor,
Equation 4 yields an inductance of
L
Vs
A
H
=
×µ =µ
17
33
4
14
..
.
A 1.5
µH inductor can be used, which gives a calculated ripple
current of 3.8 A at no load. The inductor should not saturate at
the peak current of 17 A and should be able to handle the sum
of the power dissipation caused by the average current of 15 A
in the winding and the core loss.
Designing an Inductor
Once the inductance is known, the next step is either to design an
inductor or find a standard inductor that comes as close as
possible to meeting the overall design goals. The first decision
in designing the inductor is to choose the core material. There
are several possibilities for providing low core loss at high frequen-
cies. Two examples are the powder cores (e.g., Kool-M
µ® from
Magnetics, Inc.) and the gapped soft ferrite cores (e.g., 3F3 or 3F4
from Philips). Low frequency powdered iron cores should be
avoided due to their high core loss, especially when the inductor
value is relatively low and the ripple current is high.
Two main core types can be used in this application. Open
magnetic loop types, such as beads, beads on leads, and rods
and slugs, provide lower cost but do not have a focused mag-
netic field in the core. The radiated EMI from the distributed
magnetic field may create problems with noise interference in
the circuitry surrounding the inductor. Closed-loop types, such
as pot cores, PQ, U, and E cores, or toroids, cost more, but
have much better EMI/RFI performance. A good compromise
between price and performance are cores with a toroidal shape.


Podobny numer części - ADP3193

ProducentNumer częściArkusz danychSzczegółowy opis
logo
Analog Devices
ADP3193A AD-ADP3193A Datasheet
1,007Kb / 32P
   8-Bit, Programmable, 2- to 3-Phase, Synchronous Buck Controller
REV. 0
logo
ON Semiconductor
ADP3193A ONSEMI-ADP3193A Datasheet
577Kb / 29P
   8-Bit, Programmable, 2- to 3-Phase, Synchronous Buck Controller
February 2008 ??Rev. 1
logo
Analog Devices
ADP3193AJCPZ-RL AD-ADP3193AJCPZ-RL Datasheet
1,007Kb / 32P
   8-Bit, Programmable, 2- to 3-Phase, Synchronous Buck Controller
REV. 0
logo
ON Semiconductor
ADP3193AJCPZ-RL ONSEMI-ADP3193AJCPZ-RL Datasheet
577Kb / 29P
   8-Bit, Programmable, 2- to 3-Phase, Synchronous Buck Controller
February 2008 ??Rev. 1
More results

Podobny opis - ADP3193

ProducentNumer częściArkusz danychSzczegółowy opis
logo
Analog Devices
ADP3159 AD-ADP3159 Datasheet
231Kb / 16P
   4-Bit Programmable Synchronous Buck Controllers
REV. A
ADP3158 AD-ADP3158 Datasheet
190Kb / 16P
   4-Bit Programmable Synchronous Buck Controllers
REV. A
ADP3164 AD-ADP3164 Datasheet
162Kb / 16P
   5-Bit Programmable 4-Phase Synchronous Buck Controller
REV. 0
ADP3161 AD-ADP3161 Datasheet
164Kb / 12P
   4-Bit Programmable 2-Phase Synchronous Buck Controller
REV. 0
logo
List of Unclassifed Man...
RT9233 ETC-RT9233 Datasheet
197Kb / 8P
   4 BIT PROGRAMMABLE SYNCHRONOUS PWM BUCK CONVERTER CONTROLLER
logo
ON Semiconductor
ADP3164 ONSEMI-ADP3164 Datasheet
256Kb / 15P
   5-Bit Programmable 4-Phase Synchronous Buck Controller
May 2010 - Rev. 2
logo
UNISEM
US3022 UNISEM-US3022 Datasheet
61Kb / 7P
   4 BIT PROGRAMMABLE SYNCHRONOUS BUCK PLUS FOUR LDO CONTROLLER
logo
Analog Devices
ADP3198 AD-ADP3198 Datasheet
1Mb / 32P
   8-Bit Programmable 2- to 4-Phase Synchronous Buck Controller
REV. A
ADP3192A AD-ADP3192A Datasheet
1Mb / 32P
   8-Bit Programmable 2- to 4-Phase Synchronous Buck Controller
REV. 0
ADP3168 AD-ADP3168 Datasheet
947Kb / 24P
   6-Bit, Programmable 2-, 3-, 4-Phase Synchronous Buck Controller
REV. B
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


Arkusz danych Pobierz

Go To PDF Page


Link URL




Polityka prywatności
ALLDATASHEET.PL
Czy Alldatasheet okazała się pomocna?  [ DONATE ] 

O Alldatasheet   |   Reklama   |   Kontakt   |   Polityka prywatności   |   Linki   |   Lista producentów
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com