Zakładka z wyszukiwarką danych komponentów
  Polish  ▼
ALLDATASHEET.PL

X  

FAN9612 Arkusz danych(PDF) 8 Page - Fairchild Semiconductor

Numer części FAN9612
Szczegółowy opis  Interleaved Dual BCM PFC Controllers
Download  35 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Producent  FAIRCHILD [Fairchild Semiconductor]
Strona internetowa  http://www.fairchildsemi.com
Logo FAIRCHILD - Fairchild Semiconductor

FAN9612 Arkusz danych(HTML) 8 Page - Fairchild Semiconductor

Back Button FAN9612 Datasheet HTML 4Page - Fairchild Semiconductor FAN9612 Datasheet HTML 5Page - Fairchild Semiconductor FAN9612 Datasheet HTML 6Page - Fairchild Semiconductor FAN9612 Datasheet HTML 7Page - Fairchild Semiconductor FAN9612 Datasheet HTML 8Page - Fairchild Semiconductor FAN9612 Datasheet HTML 9Page - Fairchild Semiconductor FAN9612 Datasheet HTML 10Page - Fairchild Semiconductor FAN9612 Datasheet HTML 11Page - Fairchild Semiconductor FAN9612 Datasheet HTML 12Page - Fairchild Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 35 page
background image
© 2008 Fairchild Semiconductor Corporation
www.fairchildsemi.com
FAN9611 / FAN9612 • Rev. 1.0.1
8
Theory of Operation
1.
Boundary Conduction Mode
The boost converter is the most popular topology for
power factor correction in AC-to-DC power supplies.
This popularity can be attributed to the continuous input
current waveform provided by the boost inductor and to
the fact that the boost converter’s input voltage range
includes 0V. These fundamental properties make close
to unity power factor easier to achieve.
Figure 6. Basic PFC Boost Converter
The boost converter can operate in continuous
conduction mode (CCM) or in boundary conduction
mode (BCM). These two descriptive names refer to the
current flowing in the energy storage inductor of the
boost power stage.
Typical Inductor Current Waveform In Continuous Conduction Mode
Typical Inductor Current Waveform In Boundary Conduction Mode
t
t
I
I
0A
0A
Figure 7. CCM vs. BCM Control
As the names indicate, the current in Continuous
Conduction Mode (CCM) is continuous in the inductor;
while in Boundary Conduction Mode (BCM), the new
switching period is initiated when the inductor current
returns to zero.
There are many fundamental differences in CCM and
BCM operations and the respective designs of the boost
converter.
The FAN9611/12 utilizes the boundary conduction
mode control algorithm. The fundamental concept of
this operating mode is that the inductor current starts
from zero in each switching period, as shown in the
lower waveform in Figure 7. When the power transistor
of the boost converter is turned on for a fixed amount of
time, the peak inductor current is proportional to the
input voltage. Since the current waveform is triangular,
the average value in each switching period is also
proportional to the input voltage. In the case of a
sinusoidal input voltage waveform, the input current of
the converter follows the input voltage waveform with
very high accuracy and draws a sinusoidal input current
from the source. This behavior makes the boost
converter in BCM operation an ideal candidate for
power factor correction.
This mode of control of the boost converter results in a
variable switching frequency. The frequency depends
primarily
on
the
selected
output
voltage,
the
instantaneous value of the input voltage, the boost
inductor value, and the output power delivered to the
load. The operating frequency changes as the input
voltage follows the sinusoidal input voltage waveform.
The lowest frequency operation corresponds to the
peak of the sine waveform at the input of the boost
converter. Even larger frequency variation can be
observed as the output power of the converter changes,
with maximum output power resulting in the lowest
operating frequency. Theoretically, under zero-load
condition, the operating frequency of the boost
converter would approach infinity. In practice, there are
natural limits to the highest switching frequency. One
such limiting factor is the resonance between the boost
inductor and the parasitic capacitances of the MOSFET,
the diode, and the winding of the choke, in every
switching cycle.
Another important characteristic of the BCM boost
converter is the high ripple current of the boost inductor,
which goes from zero to a controlled peak value in
every switching period. Accordingly, the power switch is
stressed with high peak current. In addition, the high
ripple current must be filtered by an EMI filter to meet
high-frequency
noise
regulations
enforced
for
equipment connecting to the mains. The effects usually
limit the practical output power level of the converter.


Podobny numer części - FAN9612

ProducentNumer częściArkusz danychSzczegółowy opis
logo
Fairchild Semiconductor
FAN9612 FAIRCHILD-FAN9612 Datasheet
762Kb / 18P
   Design Consideration for Interleaved Boundary Conduction Mode PFC
FAN9612 FAIRCHILD-FAN9612 Datasheet
5Mb / 30P
   Dual BCM PFC Controller
FAN9612 FAIRCHILD-FAN9612 Datasheet
1Mb / 37P
   Interleaved Dual BCM PFC Controllers
FAN9612M FAIRCHILD-FAN9612M Datasheet
1Mb / 37P
   Interleaved Dual BCM PFC Controller
FAN9612MX FAIRCHILD-FAN9612MX Datasheet
1Mb / 37P
   Interleaved Dual BCM PFC Controller
More results

Podobny opis - FAN9612

ProducentNumer częściArkusz danychSzczegółowy opis
logo
Fairchild Semiconductor
FAN9611_1112 FAIRCHILD-FAN9611_1112 Datasheet
1Mb / 36P
   Interleaved Dual BCM PFC Controllers
FAN9611 FAIRCHILD-FAN9611_11 Datasheet
1Mb / 37P
   Interleaved Dual BCM PFC Controllers
FAN9612M FAIRCHILD-FAN9612M Datasheet
1Mb / 37P
   Interleaved Dual BCM PFC Controller
AN-9717 FAIRCHILD-AN-9717 Datasheet
5Mb / 30P
   Dual BCM PFC Controller
logo
NXP Semiconductors
TEA2376DT NXP-TEA2376DT Datasheet
483Kb / 46P
   Digital configurable interleaved PFC controller
Rev. 1 - 10 August 2023
TEA2376AT NXP-TEA2376AT Datasheet
459Kb / 43P
   Digital configurable interleaved PFC controller
Rev. 1 - 8 November 2023
TEA2376BT NXP-TEA2376BT Datasheet
466Kb / 43P
   Digital configurable interleaved PFC controller
Rev. 1 - 10 August 2023
logo
ON Semiconductor
FPAM30LH60 ONSEMI-FPAM30LH60 Datasheet
538Kb / 13P
   PFC SPM 2 Series for 2-Phase Interleaved PFC
July 2016 Rev. 1.5
FPAM50LH60 ONSEMI-FPAM50LH60 Datasheet
614Kb / 13P
   PFC SPM 2 Series for 2-Phase Interleaved PFC
June 2015 Rev. 1.4
FAN9673 ONSEMI-FAN9673 Datasheet
1Mb / 26P
   Three-Channel Interleaved CCM PFC Controller
June, 2019 ??Rev. 7
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35


Arkusz danych Pobierz

Go To PDF Page


Link URL




Polityka prywatności
ALLDATASHEET.PL
Czy Alldatasheet okazała się pomocna?  [ DONATE ] 

O Alldatasheet   |   Reklama   |   Kontakt   |   Polityka prywatności   |   Linki   |   Lista producentów
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com